Regular factors and eigenvalues of regular graphs
نویسندگان
چکیده
منابع مشابه
Regular Factors of Regular Graphs from Eigenvalues
Let r and m be two integers such that r > m. Let H be a graph with order |H|, size e and maximum degree r such that 2e > |H|r−m. We find a best lower bound on spectral radius of graph H in terms of m and r. Let G be a connected r-regular graph of order |G| and k < r be an integer. Using the previous results, we find some best upper bounds (in terms of r and k) on the third largest eigenvalue th...
متن کاملRegular factors in regular graphs
Katerinis, P., Regular factors in regular graphs, Discrete Mathematics 113 (1993) 269-274. Let G be a k-regular, (k I)-edge-connected graph with an even number of vertices, and let m be an integer such that 1~ m s k 1. Then the graph obtained by removing any k m edges of G, has an m-factor. All graphs considered are finite. We shall allow graphs to contain multiple edges and we refer the reader...
متن کاملEigenvalues and edge-connectivity of regular graphs
In this paper, we show that if the second largest eigenvalue of a d-regular graph is less than d − 2(k−1) d+1 , then the graph is k-edge-connected. When k is 2 or 3, we prove stronger results. Let ρ(d) denote the largest root of x3 − (d− 3)x2 − (3d− 2)x− 2 = 0. We show that if the second largest eigenvalue of a d-regular graph G is less than ρ(d), then G is 2-edge-connected and we prove that if...
متن کاملQuantum Walks on Regular Graphs and Eigenvalues
We study the transition matrix of a quantum walk on strongly regular graphs. It is proposed by Emms, Hancock, Severini and Wilson in 2006, that the spectrum of S+(U3), a matrix based on the amplitudes of walks in the quantum walk, distinguishes strongly regular graphs. We find the eigenvalues of S+(U) and S+(U2) for regular graphs and show that S+(U2) = S+(U)2 + I.
متن کاملTight estimates for eigenvalues of regular graphs
It is shown that if a d-regular graph contains s vertices so that the distance between any pair is at least 4k, then its adjacency matrix has at least s eigenvalues which are at least 2 √ d − 1 cos( π 2k ). A similar result has been proved by Friedman using more sophisticated tools.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2014
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2014.05.007